
Lockheed Martin Low-Cost F-35 Simulator

Senior Design Team 514

Meet the Team

Jonah Gibbons Manufacturing & Electrical Engineer

Laiken Kinsey Test and Analytical Engineer

Francisco Lopez Control Systems Engineer Branden Pacer Mechanical Engineer & Web Design

Will Rickles Mechatronics Engineer

Emelia Rodriguez Project Manager & Research Engineer

Sponsor and Advisor

Andrew Filiault Mechanical Engineer, B.S. JSF F-35 Pilot Training and Training Infrastructure Systems

Brandon Krick Mechanical Engineer, Ph.D. Associate Professor

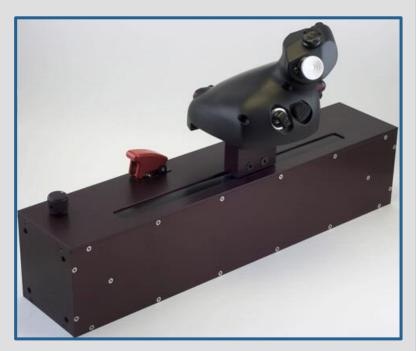
Project Objective

The objective of this project is to create F-35 flight controls that integrate with Lockheed Martin's simulator software to be used in the pilot training program

Laiken Kinsey

4

Rudder Pedal System



- Rudder Pedal System (RPS): Controls the rudders which change the yaw axis of the aircraft and also the wheel brakes
- Initially developed by a previous senior design team, we will incorporate this Rudder Pedal System with minor modification

HOTAS System

- HOTAS: Hands on Throttle and Stick
- Throttle: Controls the thrust from the jet engine
- Stick: Controls the pitch and roll axes of the aircraft
- Initially developed by a previous senior design team, we will completely redesign the stick concept

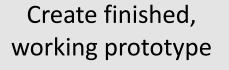
Throttle

Laiken Kinsey

Department of Mechanical Engineering

3D Printed Cockpit and Desktop Simulator for Training

Pilots train in simulators to develop muscle memory and learn the unique operating procedures of the aircraft



Key Goals

Integrate both physical subsystems into the simulation software Keep manufacturing costs low

• • •

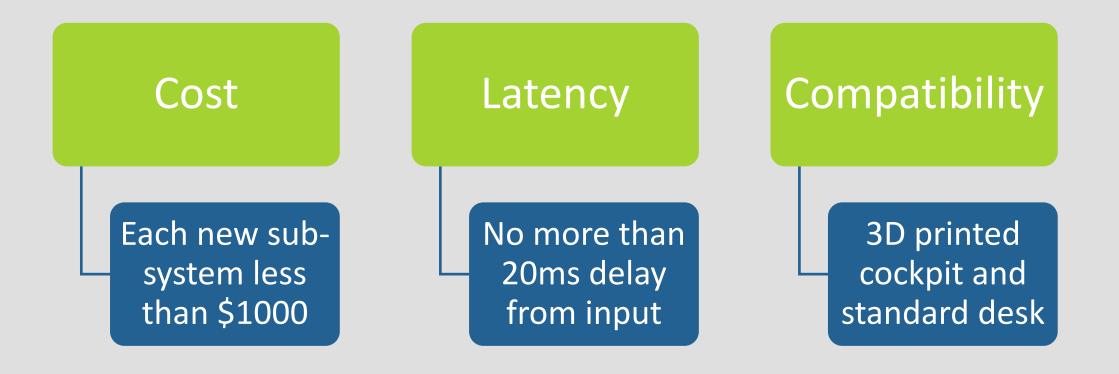
Can be used in desktop or cockpit

training models

Flight Control Functions

Pilot Interface

- Controls closely mimic F-35 look and feel
- Mechanic parts will withstand repeated use

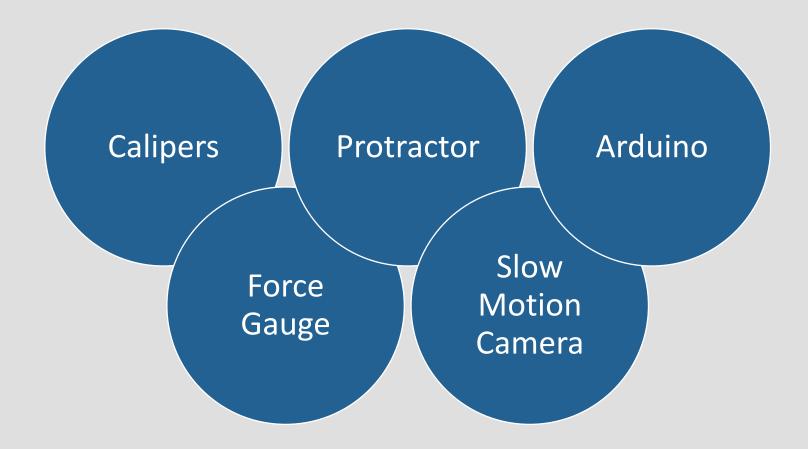

Communicate to software

- Controller position awareness
- Negligible input delay
- Inputs accurately affect simulated jet

Critical Targets

Laiken Kinsey

10


Additional Targets

Laiken Kinsey

11

Methods of Validation

Laiken Kinsey

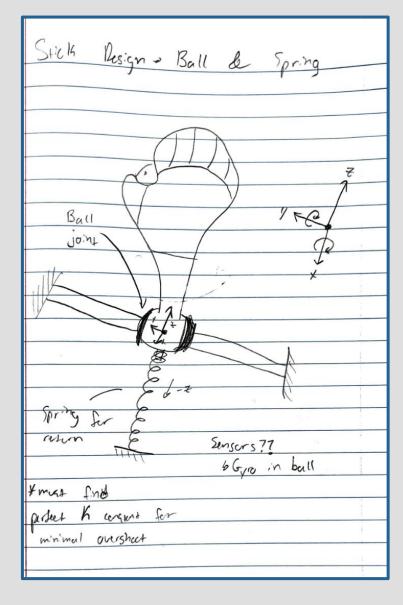
Department of Mechanical Engineering

- 100 unique design concepts were generated
- ✤ Four components to consider:
 - Joystick

 - Electrical Integration
- Two or more high fidelity concepts selected per category
 - High fidelity concepts move forward to selection process

13

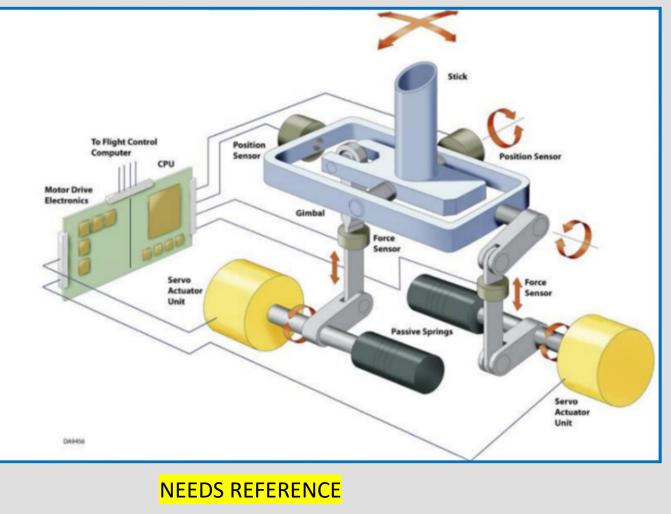
Joystick High Fidelity Concepts


- Single-spring, ball joint

Joystick High Fidelity Concepts:

Single-spring, ball joint— a ball in a socket with a single spring below to keep the neutral position upright

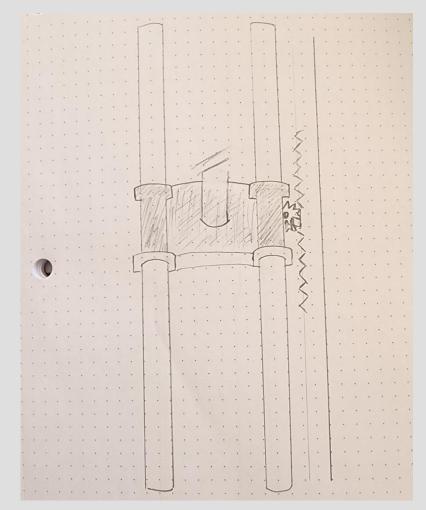
- The design is simpler to construct and easier to support from downward forces of pilot's hand
- Much harder to measure the joystick position with sensors


Branden Pacer

15

Joystick High Fidelity Concepts:

- Multi-plane gimbal— two-piece gimbal with axels connected to rotary sensors with individual springs to keep the neutral position upright
- This requires more intricate pieces to construct but is identical to the actual construction in an F-35 jet
- Linkages make it easier to measure position



Throttle High Fidelity Concepts:

Multiple, tube rails— the throttle handle will slide along two parallel rails

- This concept was considered in order to resist the risk of torque damage and instability that a single tube rail would have
- Requires a lot of "from-scratch" design work on the cart and its bearings

Branden Pacer

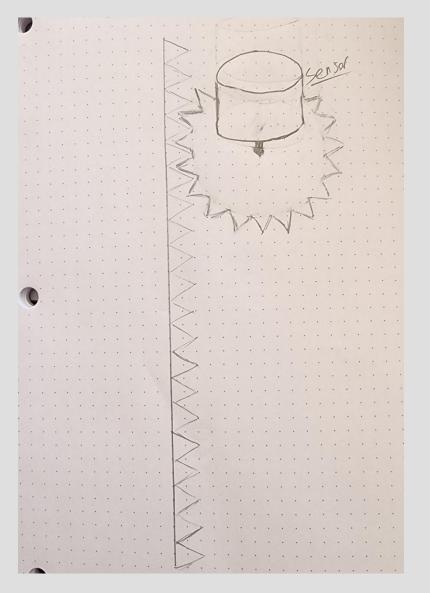
17

Throttle High Fidelity Concepts:

Single, rectangular rail— the throttle handle will slide along a single rail with ball bearings in the grooves

This concept is very high-strength and the construction eliminates concerns of torque damage and excessive wear

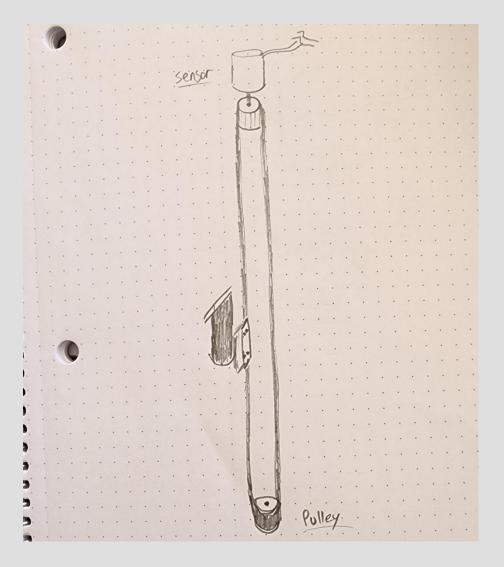
It is pre-manufactured and low cost



Throttle Position Concepts:

Gears: rack and pinion— the sensor would be attached to a rack and pinion to actuate it when the throttle is moved

This concept is very simple and durable



Throttle Position Concepts:

Belt actuated— the sensor would be attached to a pulley with a belt around it which is fixed to the cart, moving with the throttle handle

This concept is could be tricky to design from scratch and requires more maintenance and adjustable tensioning

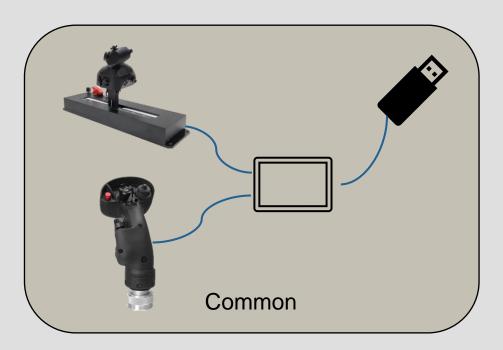
Sensor High Fidelity Concepts:

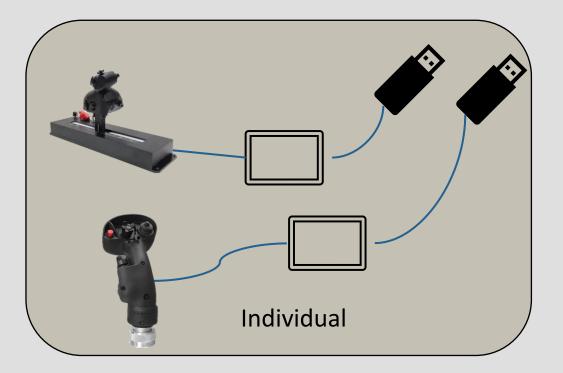
Rotary Hall Effect— measures the strength of a magnetic field from a permanent magnet which moves inside

- Because the sensor doesn't rely on mechanical contact, it has a longer lifespan
- The sensors cost more

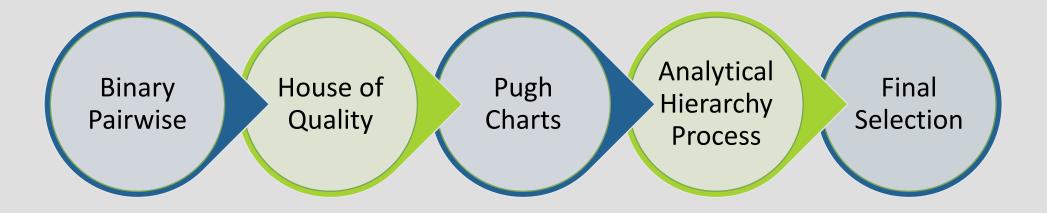


Sensor High Fidelity Concepts:


Potentiometer— contains a wound resistive element and a wiper contact which moves along the element providing a variable level of resistance


They are very cheap, standard, and easy to implement

Microcontroller Options Individual controllers Common controller



Branden Pacer

23

Concept Selection Process

Branden Pacer

Department of Mechanical Engineering

Binary Pairwise Comparison

	1	2	3	4	5	6	7	8	9	Total	IWF
1. Cheap to manufacture	-	1	0	1	0	1	0	1	1	5	4
2. Fits into desk and cockpit model	0	-	0	0	0	1	0	1	1	3	2
3. Equipment fully integrated with Prepar3D	1	1	-	1	0	1	1	1	1	7	5
4. Will be able to simulate flying a box	0	1	0	-	0	1	0	1	1	4	3
5. Complete, polished prototype	1	1	1	1	-	1	1	1	1	8	5
6. Components provide appropriate resistance	0	0	0	0	0	-	1	1	0	2	2
7. Provides accurate in-flight feel for F-35	1	1	0	1	0	0	-	1	0	4	3
8. Lower mechanical complexity	0	0	0	0	0	0	0	-	1	1	1
9. Withstand vigorous use	0	0	0	0	0	1	1	0	-	2	2
Total	3	5	1	4	0	6	4	7	6	n-1=8	

House of Quality

HoQ Improvement direction Units psi s Ibs \$ integer in hour	^
Units psi s Ibs S integer in hou	
Applied resistance Number of parts Deviation from given dimensions Time to complete	Aesthetics
Cheap to manufacture 4 1 9 1	
Fits into desk and cockpit model 2 1 9	
Equipment fully integrated with Prepr3D 5 9 9	
Will be able to simulate flying a box 3 3 9	
Complete, polished prototype 5 3	9
Components provide appropriate resistance 2 3 9	
Provides accurate in-flight feel for F-35 3 3 9 9 1	
Lower mechanical complexity 1 9	
Withstand vigorous use 2 9 3	
Raw Score (373) 28 63 99 51 36 11 21 19	45
Relative Weight % 7.5 16.9 26.5 13.7 9.7 2.9 5.6 5.1	12.1
Rank Order 6 2 1 3 5 9 7 8	4

Pugh Chart

Selection Criteria Datum		Concepts							
	Current LM F35 Sim "Wraith"	1	2	3	4	5	6	7	8
Accuracy of Position Sensing		-	+	-	+	-	-	-	-
Latency		+	+	-	-	+	+	-	-
Applied Resistance		-	-	-	+	-	+	-	+
Aesthetics		+	-	S	S	+	-	S	S
Cost of Materials		+	+	+	+	+	+	+	+
Material Strength		-	-	-	-	-	-	-	-
# of pluses		3	3	1	3	3	3	1	2
# of minuses		4	3	4	2	4	3	4	3

Concept	electrical	throttle	joystick	rps
1	hall & individual	single	ball	use existing
2	hall & individual	single	gimbal	use existing
3	hall & common	single	ball	use existing
4	hall & common	multi	gimbal	use existing
5	pot & individual	single	gimbal	use existing
6	pot & individual	multi	gimbal	use existing
7	pot & common	single	gimbal	use existing
8	pot & common	multi	gimbal	use existing

Pugh Chart

Selection Criteria	Datum			Conc	epts		
Selection Criteria	Past year projects	1	2	4	5	6	8
Accuracy of Position Sensing		-	+	+	+	+	+
Latency		+	+	+	+	+	+
Applied Resistance		S	+	+	+	+	+
Aesthetics		-	-	+	-	-	+
Cost of Materials		-	-	-	-	-	-
Material Strength		+	+	+	+	+	+
# of pluses		2	4	5	4	4	5
# of minuses		3	2	1	2	2	1

Concept	electrical	throttle	joystick	rps
1	hall & individual	single	ball	use existing
2	hall & individual	single	gimbal	use existing
3	hall & common	single	ball	use existing
4	hall & common	multi	gimbal	use existing
5	pot & individual	single	gimbal	use existing
6	pot & individual	multi	gimbal	use existing
7	pot & common	single	gimbal	use existing
8	pot & common	multi	gimbal	use existing

Pugh Chart

Selection Criteria	Datum	Concepts				
Selection Chiena	Logitech pro flight	2	4	5	6	8
Accuracy of Position Sensing		+	+	S	S	S
Latency		S	-	S	S	-
Applied Resistance		+	+	+	+	+
Aesthetics		S	+	S	S	+
Cost of Materials		-	-	+	S	S
Material Strength		-	-	-	-	-
# of pluses		2	3	2	1	2
# of min	# of minuses		3	1	1	2

Concept	electrical	throttle	joystick	rps
1	hall & individual	single	ball	use existing
2	hall & individual	single	gimbal	use existing
3	hall & common	single	ball	use existing
4	hall & common	multi	gimbal	use existing
5	pot & individual	single	gimbal	use existing
6	pot & individual	multi	gimbal	use existing
7	pot & common	single	gimbal	use existing
8	pot & common	multi	gimbal	use existing

AHP for the targets resulted in the following data

Criteria	{W}	Rank		
Accuracy of Position Sensing	0.319	1		
Latency	0.229	2		
Applied Resistance	0.121	4		
Aesthetics	0.119	5		
Cost of Materials	0.151	3		
Material Strength	0.032	6		
Deviation from Given Dimensions	0.029	7		

CR=0.043

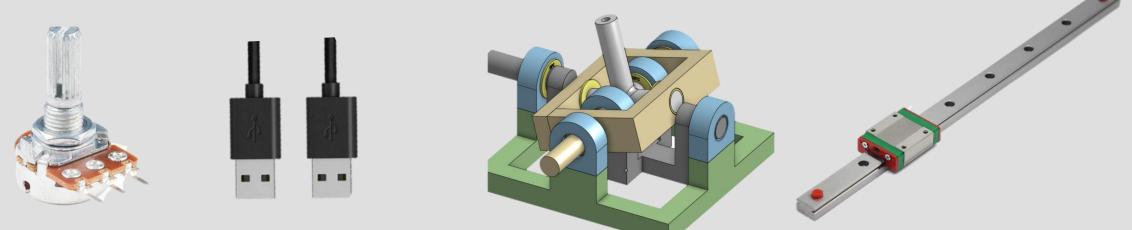
Accuracy of position sensing AHP

Concept	{W}	Rank			
2	0.71	1			
5	0.14	2			
8	0.14	2			
CR=0					

Latency AHP

Concept	{W}	Rank			
2	0.311	2			
5	0.623	1			
8	0.066	3			
CR=0.133					

Cost of Materials AHP


[C]	{W}	Rank			
2	0.074	3			
5	0.643	1			
8	0.283	2			
CR=0.063					

Final Selection

Concept 5: potentiometer to sense position, individual microcontroller for the RPS and throttle, separate microcontroller for the joystick, the throttle slides on a single rail, and the joystick is on a gimbal joint

Final Ranking			
	Concept		
	2	5	8
Accuracy	0.714	0.143	0.143
Latency	0.311	0.623	0.066
Cost	0.074	0.643	0.283
Average	0.366	0.470	0.164

Future Work

CAD Model of HOTAS

Bill of Materials

Risk Assessment Forms

William Rickles

35

Department of Mechanical Engineering

Questions?

Department of Mechanical Engineering

References

- https://a.co/d/8cJI5wl
- https://lockheedmartinf35.smugmug.com/browse
- https://realsimulator.com/rs-35-pro/
- https://www.mouser.com/new/tdk/tdk-hal188y-hall-effect-sensors/
- <u>https://www.amazon.com/ReliaBot-Linear-Carriage-Printer-Machine/dp/B07PVHNSRV</u>
- https://www.sparkfun.com/products/14624
- <u>https://forum.onshape.com/discussion/14688/gimbal-mechanism-unexpected-over-constraint</u>
- https://www.addicore.com/SS49E-Linear-Hall-Sensor-p/ad316.htm

